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good pQCD description of data at 200 GeV, at all 
rapidities, down to pT of 1-2 GeV/c 

Polarization-averaged cross sections at √s=200 GeV



rather good agreement even at √s=62.4 GeV

11% normalization 
uncertainty not included

mid-rapidity pions 

Comparison of NLO pQCD calculations 
with BRAHMS π data at high rapidity. 
The calculations are for a scale factor 

of μ=pT, KKP (solid) and DSS (dashed) .
with CTEQ5 and CTEQ6.5.



dσ↑ − dσ↓ =
∑

a,b,c,d=q,q̄,g

∆T fa ⊗ fb ⊗ [dσ̂↑ − dσ̂↓]⊗Dπ/c

FF pQCD elementary 
SSAtransversity 

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓ ∝ âN ∝ mq
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E704

BNL, ANL, Fermilab, Serpukhov

also: ! Polarization

" L

R

E704  √s = 20 GeV    0.7 < pT < 2.0   

but, .... where it all started from



p↑p→ π X

p̄↑p→ π X

xF = xa − xb

BNL-AGS  √s = 6.6 GeV 
0.6 < pT < 1.2  

E704  √s = 20 GeV    0.7 
< pT < 2.0   

E704  √s = 20 GeV 0.7 
< pT < 2.0   

observed transverse Single 
Spin Asymmetries 

large xF ⇒ xa valence region



STAR-RHIC  √s = 200 GeV    1.2 < pT < 2.8   

RHIC: good description of unpolarized cross-section, 
with collinear factorization. And AN ... ?



patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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Systematic errors potentially arise from several sources.
The bunch counter, used for the spin directions, identifies
events in the abort gaps arising from single-beam back-
grounds. They account for <5! 10"4 of the observed
yield. Systematic effects from gain variations with time
are controlled by polarization reversals of the stored beam
bunches, as demonstrated by examples of spin-sorted M!!

for L;R modules in the inset of Fig. 2. Distributions of the
significance, Si ¼ ðAN;i " ANÞ=!AN;i, are well described
by zero mean value Gaussian distributions with " equal to
unity, as expected if the uncertainties are dominated by
statistics, except near the trigger threshold where larger "
is observed. Systematic errors are estimated from "!
!AN and differences in AN associated with #0 identifica-
tion, with the largest value chosen. The upper limit on a
correlated systematic error, common to all points, arising
from instrumental effects is $AN & 4! 10"4.

The same pair of modules concurrently measure AN

values consistent with zero for xF < 0 and AN that in-
creases with xF for xF > 0, depending on which beam
spin is chosen. Null results at xF < 0 are natural since a
possible gluon Sivers function is probed where the unpo-
larized gluon distribution is large. For xF > 0, a calculation
[13,28] using quark Sivers functions fit [29] to SIDIS data
[7] best describes our results at h%i ¼ 3:3. Twist-3 calcu-
lations [16] that fit p" þ p ! #þ X data at

ffiffiffi
s

p ¼ 20 GeV
[4] and preliminary RHIC results from the 2003 and 2005
runs at

ffiffiffi
s

p ¼ 200 GeV [21,22] best describe the data at
h%i ¼ 3:7. Both calculations are in fair agreement with the
variation of AN with xF. Neither calculation describes data
at both h%i.

Events from modules at different h%i that overlap in the
xF-pT plane (Fig. 1) provide consistent results. Hence, it is
possible to further bin the results not only by xF but also by
pT . For this analysis, pT is determined from the measured
energy, the fitted position of the #0 within an FPD module,
and the measured position of the module relative to the
beam pipe and to the collision vertex. The z component of
the event vertex uses a coarse time difference between the
east and west beam-beam counters, and is determined to
(20 cm resulting in !pT=pT ¼ 0:04, where !pT is the
uncertainty in pT . One method of determining the pT

dependence (Fig. 3) was to select events with jxFj> 0:4.
AN is consistent with zero for xF <"0:4. For xF > 0:4,
there is a hint of an initial decrease of AN with pT , although
the statistical errors are large, since h%i ¼ 4:0 data were
only obtained in the 2003 and 2005 runs with limited
integrated luminosity and polarization. For pT >
1:7 GeV=c, AN tends to increase with pT for xF > 0:4.
This is contrary to the theoretical expectation that AN

decreases with pT .
The results in Fig. 3 may still reflect small correlations

between xF and pT for each point, rather than the depen-
dence of AN on pT at fixed xF. To eliminate this correla-
tion, event selection from Fig. 1 was made in bins of xF,

followed by bins in pT . The resulting variation of AN with
pT is shown in Fig. 4, compared to calculations [13] using
a Sivers function fit to p" þ p ! #þ X data [4] and twist-
3 calculations [16]. For each point, the variation of hxFi is
smaller than 0.01. There is a clear tendency for AN to
increase with pT , and no significant evidence over the
measured range for AN to decrease with increasing pT , as
expected by the calculations. This discrepancy may arise
from unexpected TMD fragmentation contributions, xF; pT

dependence of the requisite color-charge interactions, evo-
lution of the Sivers functions, or from process dependence
not accounted for by the theory.
In summary, we have measured the xF and pT depen-

dence of the analyzing power for forward #0 production in
p" þ p collisions at

ffiffiffi
s

p ¼ 200 GeV in kinematics (0:3<
xF < 0:6 and 1:2< pT < 4:0 GeV=c) that straddle the
region where cross sections are found in agreement with
pQCD calculations. The xF dependence of the #0 AN is in

FIG. 3 (color online). Analyzing powers versus #0 transverse
momentum (pT) for events with scaled #0 longitudinal momen-
tum jxFj> 0:4. Errors are as described for Fig. 2.

FIG. 4 (color online). Analyzing powers versus #0 transverse
momentum (pT) in fixed xF bins (see Fig. 1). Errors are as
described for Fig. 2. The calculations are described in the text.
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FIG. 1: pT vs. xF for the data used in the SSA analysis.
The dotted boxes are for the measurements from FS at 6◦,
the filled boxes are from FS at 2.3◦ and the empty boxes with
solid line are from 3◦. Data from FS at 2.3◦ and 3◦ are used
in combination for kaons and protons. The size of the boxes
represents the relative intensity of the data in logarithmic
scale. The 5 bands marked as (a)-(e) are the pT ranges used
in the Fig. 3.

ton distribution functions and fragmentation processes.
We present here the first measurement of xF -dependent
SSAs of identified charged hadrons, π±, K±, and pro-
tons, from transversely polarized proton-proton collisions
at 62.4 GeV at RHIC.

The SSA is defined as a “left-right” asymmetry of pro-
duced particles from the hadronic scattering of trans-
versely polarized protons by unpolarized protons. Ex-
perimentally the asymmetry can be obtained by flipping
the spins of polarized protons, and is customarily defined
as analyzing power AN :

AN =
1

P
(N+ − LN−)

(N+ + LN−)
, (1)

where P is polarization of the beam, L is the spin de-
pendent relative luminosity (L = L+/L−) and N+(−)

is the number of detected particles with beam spin vec-
tor oriented up (down). Since both colliding beams are
polarized at RHIC, the polarization of “target” protons
is averaged over in Eq. 1. The systematic error on the
AN measurements is estimated to be 10% including un-
certainties from the beam polarization, δP/P ∼ 7.2% for
the “Blue” beam (circulating clockwise) and 9.3% for the
“Yellow” beam (circulating counter-clockwise). The po-
larization of the Blue (Yellow) beam is utilized for the
AN measurements of particles in positive (negative) xF .
The systematic error represents mainly scaling uncertain-
ties on the values of AN . The average polarization of the
beam P measured by the Hydrogen Jet and pC polarime-
ters is about 50% for the Blue and Yellow beams [17].

The data presented here were collected by the
BRAHMS detector system [18] with polarized p + p col-
lisions from RHIC with a sampled integrated luminosity
of 0.21 pb−1 at

√
s = 62.4 GeV. The relative luminosity

(L) between the sums of spin-up and spin-down bunches
was measured with a set of Cherenkov radiators placed
symmetrically with respect to the nominal interaction
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FIG. 2: AN vs. xF for π+ and π−. Circle symbols are for
π+ and box symbols are for π− measured in FS at 2.3◦ (solid
symbols) and 3◦ (open symbols). The curves are from the-
oretical calculations. Solid lines are to be compared with
the data at 2.3◦ and dotted lines are for 3◦. Thick (solid
and dotted) lines are from the initial-state Twist-3 calcula-
tions [21, 23], medium lines are from the final-state Twist-3
calculations [24, 25]. Predictions from the Sivers function
calculations are shown as thin lines [26, 27]. Only statistical
errors are shown where larger than symbols.

point [14]. The detectors cover the pseudo-rapidity (η)
interval from 3.26 < |η| < 5.25, and are measured from
Vernier scans to be sensitive to ∼33% of the total inelas-
tic cross-section of 36 mb at 62.4 GeV. The uncertainty
of determining the relative luminosities is estimated to
be 0.3%. The Forward Spectrometer (FS) measures
charged particle tracks in the forward kinematic region
(θ = 2.3◦ − 15◦) with good momentum resolution and
particle identification. The momentum (p) resolution of
the FS is δp/p ≈ 0.0016p for the half field setting where p
is in GeV/c. Particle identification was done by utilizing
the Ring Image Cherenkov Detector (RICH) [19] detec-
tor which is capable of identifying pions and kaons up
to p ∼ 35 GeV/c and protons above 17 GeV/c with an
efficiency of ∼97% and a negligible (!0.5%) probability
of misidentification in the measured kinematic range (p
< 20 GeV/c). The kinematic coverages of the data taken
with the FS at 2.3◦, 3◦ and 6◦ as a function of pT and xF

are shown in Fig. 1, where the narrow pT -xF correlated
band at a given setting is due to the small aperture of the
spectrometer. A detailed description of the spectrometer
and other experimental details can be found in [18].

The analyzing power AN for charged pions, AN (π+)
and AN (π−) at

√
s = 62.4 GeV as a function of xF is

shown in Fig. 2 for the two FS angle settings, 2.3◦ and
3◦. At a fixed xF value, the 3◦ setting samples higher pT

pions as indicated in Fig. 1. The mean pT values 〈pT 〉 at
xF =0.55 are 1.08 and 1.28 GeV/c at 2.3◦ and at 3◦, re-
spectively [20]. The measured AN values show strong de-
pendence in xF reaching large asymmetries up to ∼40%
at xF ∼ 0.6 and no significant asymmetries at −xF . The
decrease of AN at high-pT ( "1 GeV/c) and high-xF ,
especially for π+, as shown in Fig. 2 by comparing the
two sets of measurements at 2.3◦ and at 3◦ might indi-
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FIG. 3: AN vs. xF for π+ and π− for positive xF at fixed pT values: (a)0.4 < pT < 0.5, (b)0.5 < pT < 0.6, (c)0.6 < pT < 0.8,
(d)0.8 < pT < 1.0, and (e)1.0 < pT < 1.2 GeV/c as shown in Fig. 1, respectively.

cate that AN is in accordance with the expected power-
suppressed nature of AN [21]. The asymmetries and their
xF -dependence are qualitatively in agreement with the
measurements from E704 at

√
s = 19.3 GeV and also

most recent AN (π0) measurements at RHIC
√

s = 200
GeV [3, 13]. Figure 2 also compares AN (π) with a pQCD
calculation in the range of pT > 1 GeV/c using “ex-
tended” twist-3 parton distributions [10] including the
“non-derivative” contributions [21, 22, 23]. In this frame-
work, results of two calculations from the model are com-
pared with the data. One is with only two quark va-
lence densities (uv,dv) in the ansatz, which is shown in
Fig. 2. The second with additional sea- and anti- quark
contributions in the model fit slightly increases AN (π)
(∼5%). As the calculations show, the dominant contri-
bution to SSA is from valence quarks with contributions
from sea- and anti- quarks small enough that the cur-
rent measurements are not able to quantitatively con-
strain the contribution. The calculations, which were
done in the same kinematic range as the data, describe
the data, especially AN (π−) within the uncertainties.
AN (π) calculated from the “final-state twist-3”[24] which
uses the twist-3 fragmentation function (FF) for the pion
clearly under-predicts AN (π−) while is in a reasonable
agreement within uncertainties for AN (π+). In Fig. 2,
the data are also compared with calculations including
Sivers mechanism which successfully describe the E704
AN data using valence-like Sivers functions [26, 27] for u
and d quarks with opposite sign. The FFs used are from
the KKP parameterization [28], but the Kretzer FF [29]
gives similar results. The calculations underestimate AN ,
which indicates that TMD parton distributions are not
sufficient to describe the SSA data at this energy. As very
recent studies [30] suggest, Collins mechanism might also
be needed to account fully for the observed asymmetries.
All AN (π) calculations compared with the data shows
|AN (π+)| ∼ |AN (π−)| while the data exhibit |AN (π+)|
< |AN (π−)| where pT ! 1 GeV/c. Since there is a strong
kinematic correlation between xF and pT in the data as
shown in Fig. 1, the rise of AN in Fig. 2 can be also
driven by pT .

Figure 3 shows AN (π+) and AN (π−) for 5 different pT
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FIG. 4: AN(K+) and AN(K−) vs. xF . Circle symbols are for
K+ and box symbols are for K−. The solid (K+) and dotted
(K−) lines are from the initial-state twist-3 calculations with
(thick lines) and without (medium lines) sea- and anti-quark
contribution. Calculations for the Sivers function are shown
as thin lines. Errors are statistical only.

regions from 0.4 to 1.2 GeV/c. As seen in Fig. 3, the
xF dependence of AN at low-pT (pT " 0.5 GeV/c) is
very small but increases with pT in the kinematic region
at least up to pT∼1 GeV/c. The pT -dependence of ana-
lyzing powers with xF is qualitatively consistent with the
measurements at

√
s = 19.3 GeV, where strong xF depen-

dent SSAs is observed only above a pT “threshold” (" 0.7
GeV/c) [3]. It is noted that the trend is also qualitatively
in agreement with the polarization of the Λs produced at
the same collision energy,

√
s = 62 GeV [5]. The SSAs

for charged kaons as a function of xF are shown in Fig. 4
together with twist-3 and Sivers calculations (see the fig-
ure caption for details). The asymmetry for K+(us̄) is
positive as is the AN of π+(ud̄), which is expected if the
asymmetry is mainly carried by valence quarks, but the
measured positive SSAs of K−(ūs) seem to contradict
the näive expectations [31] of valence quark dominance.
In a valence-like model (no Sivers effect from sea-quarks
and/or gluons), non-zero positive AN (K−) implies large

non-leading FFs (DK
−

u , DK
−

d
) and insignificant contri-

bution from strange quarks. Twist-3 calculations using
Kretzer FF also under-predict AN (K−) due to the small

pion and Kaon 
SSA, measured 

by BRAHMS 
at √s = 62.4 

GeV

PRL 101, 042001 (2008)

data keep 
coming ...
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FIG. 5: AN vs. xF of the proton.

contribution of sea and strange-quark contribution to AN

in the model. Notably the un-polarized cross-section for
K+ is an order of magnitude higher than for K− [16].
The current calculations for kaon asymmetries need an
extra or a different mechanism to account for positive
AN (K−) at similar level of AN (K+) as shown in Fig. 4.
If the asymmetries of K− is mainly driven by pQCD
effects, the discrepancies between data and calculations
are expected to be reduced once the Sivers function is
better understood for sea-quarks and also FFs especially
the unfavored FFs. Likewise possible non-negligible con-
tributions from the Collins mechanism, as recently re-
ported [32, 33], may need to be explored further.

SSAs at xF < 0 probe the kinematics of the sea (gluon)
region of p↑ at small-x and the valence region of p, which
was experimentally measured by the produced particles
in the forward hemisphere of p in the p+p↑ collisions uti-
lizing the polarization information of the “target”. The
measured insignificant AN for pions and kaons in large
|xF | when xF < 0 indicates no significant contribution to
AN from processes where gq scattering is enhanced, and

the asymmetries are dominated by the processes where
large quark PDFs and FFs are expected. In Fig. 5, we
demonstrate that inclusive protons show no significant
asymmetries in contrast to pions and kaons in the for-
ward kinematic region. The insignificant asymmetries
observed are consistent with the measurements at lower
energies [2, 34], but require more understanding of their
production mechanism to theoretically describe the be-
havior because a significant fraction of the protons might
still be related to the polarized beam fragments at this
kinematic range [14].

In summary, BRAHMS has measured SSAs for inclu-
sive identified charged hadron production at forward ra-
pidities in p↑+p at

√
s = 62.4 GeV. A twist-3 pQCD

model describes the xF dependence of AN (π) and the
energy dependence at high-pT (pT > 1 GeV/c) where
the calculations are applicable, but it remains a chal-
lenge for pQCD models to consistently describe spin-
averaged cross-sections at this energy [15, 16]. Measure-
ments of AN for kaons and protons suggest the possi-
ble manifestation of non-pQCD phenomena and call for
more theoretical modeling with improved understanding
of the fragmentation processes. The energy and flavor
dependent asymmetry measurements impose an impor-
tant constraint on theoretical models describing funda-
mental mechanisms of transverse spin asymmetries and
the Quantum Chromodynamical description of hadronic
structure.
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AN xF-dependence in pT slices, √s = 200 GeV
(C. Aidala talk at Transversity 2008)



photon decays improves for larger xF in the η mass region and is significant for xF above
about 0.4. In Figure 1, the three pairs of mass plots correspond to a further selection
of events with photon pair energies in the indicated ranges. The mass regions that will
be associated with π0 and η mesons are indicated with the vertical bands. It is for the
events in these two mass bands that the single spin asymmetry is calculated as a function
of xF using the cross ratio method[7]. These asymmetries are shown in Figure 2.
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Fig. 1. Two photon mass distributions are shown in 3 en-
ergy ranges with π0 and η mass bands indicated. Note the
log scale on the upper plots and that the linear scale on the
lower plots emphasizes the η peak.
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Fig. 2. The dependence of AN on xF is
plotted for the π0 and η mass bands de-
fined by mπ0 = 0.135 ± 0.05 GeV for π0

and mη = 0.55 ± 0.07 GeV for η.

3. Results and Summary

Like the E704 measurement, the asymmetry AN for the η meson mass region is larger
than that for the π0 region. The weighted average of this asymmetry over Feynman xF

in the range 0.55 < xF < .75 is 〈AN 〉η = 0.361 ± 0.064. In comparison, for the π0 mass
region the corresponding asymmetry is 〈AN 〉π0 = 0.078 ± 0.018. The errors here are
statistical, with preliminary estimates of systematic errors much smaller. This difference
in AN between the η mass region and the π0 region is more than four standard deviations.
In the η region, we further note the trend to higher asymmetry at larger xF , raising the
question as to whether the asymmetry is approaching a maximal value of 1 in the high
xF end of this range. This result is consistent with the E704 measurement but is more
significant with largest AN at higher xF than previously measured.
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dσ↑ =
∑

a,b,c=q,q̄,g

fa/p↑(xa,k⊥a)⊗ fb/p(xb,k⊥b)⊗ dσ̂ab→cd(k⊥a,k⊥b)⊗Dπ/c(z,p⊥π)

SSA in hadronic processes: TMDs, higher-twist correlations?
Two main different (?) approaches

1. Generalization of collinear scheme 
(assuming factorization)

(first proposed by Field-Feynman in unpolarized case)
M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

a b

c
X

X

σ̂

single spin effects in TMDs



General formalism with helicity amplitudes 
(Cagliari-Torino group)

M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia,       
PR D71, 014002 (2005), PR D73, 014020 (2006)

dσ(A,SA)+(B,SB)→C+X =
∑

ρa/A,SA

λa,λ′
a

f̂a/A,SA
(xa,k⊥a)⊗ ρb/B,SB

λb,λ′
b

f̂b/B,SB
(xb,k⊥b)

⊗ M̂λc,λd;λa,λb
M̂∗

λ′
c,λd;λ′

a,λ′
b
(k⊥a,k⊥b) D̂

λC ,λ C

λc,λ′
c

(z,k⊥C)

polarized pQCD processes

PDFs for polarized partons inside polarized hadrons

polarized FFs

Take into account all intrinsic motions: in parton 
distributions, fragmentation and elementary interactions. 

It brings dependence on plenty of phases...   



EC dσ(A,SA)+(B,SB)→C+X

d3pC

=
∑

a,b,c,d,{λ}

∫
dxa dxb dz

16π2xaxbz2s
d2k⊥a d2k⊥b d3k⊥C δ(k⊥C · p̂c) J(k⊥C)

× ρa/A,SA

λa,λ′
a

f̂a/A,SA
(xa,k⊥a) ρb/B,SB

λb,λ′
b

f̂b/B,SB
(xb,k⊥b)

× M̂λc,λd;λa,λb
M̂∗

λ′
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δ(ŝ + t̂ + û) D̂
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(z,k⊥C) ,
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λa,λ′
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(

ρa
++ ρa
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−+ ρa

−−

)

A,SA
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1
2

(
1 + P a

z P a
x − iP a

y

P a
x + iP a

y 1− P a
z

)

A,SA

cross-section

parton helicity density matrix

x,y and z refer to parton helicity frame



Origin of phases and quark correlator 

ρa/A,SA

λa,λ′
a

f̂a/A,SA
(xa,k⊥a) =

∑

λA,λ′
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ρA,SA

λA,λ′
A

∑

XA,λXA

∫
F̂λa,λXA

;λA
F̂∗λ′

a,λXA
;λ′

A

≡
∑
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a

λA,λ′
A

F̂λa,λXA
;λA

(xa,k⊥a) helicity amplitude for the “process”: 
A→ a + X

from general properties of helicity amplitudes:
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F̂
λa,λ′

a

λA,λ′
A
(xa,k⊥a) is the quark correlator 

F̂
λa,λ′
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λA,λ′
A

=
∑

XA,λXA

∫
F̂λa,λXA

;λA
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The leading-twist correlator, with intrinsic k┴, 
contains eight independent functions with 

partonic interpretation  

Φ(x,k⊥) =
1
2

[
f1/n+ + f⊥1T

εµνρσγµnν
+kρ
⊥Sσ

T

M
+

(
SL g1L +

k⊥ · ST

M
g⊥1T

)
γ5/n+

+ h1T iσµνγ5nµ
+Sν

T +
(

SL h⊥1L +
k⊥ · ST

M
h⊥1T

)
iσµνγ5nµ

+kν
⊥

M

+ h⊥1
σµνkµ

⊥nν
+

M

]

4 M. ANSELMINO

P, S

q q

k

k′

P, S

Fig. 1. – The handbag diagram for DIS. At leading QED order, the interaction between the
lepton (not shown) and the nucleon is mediated by the exchange of a virtual photon. Thus, the
DIS cross section is just the total cross section for the γ∗N → X process, which, by the optical
theorem, is related to the forward scattering amplitude. In the parton model, at leading QCD
order, the virtual photon scatters off a single quark in the nucleon, as represented in the figure.
The lower blob is thus the matrix element between the nucleon initial and final states of two
quark fields, one ”extracted from” and the other ”replaced into” the nucleon. It is a matrix in
the Dirac spinor space.

and it shows the chiral-odd nature of transversity, as it relates quarks with opposite
helicities. It is then clear why h1 cannot be measured in DIS: the bottom blob of fig. 2
cannot be inserted in the handbag diagram of fig. 1, as the QED (and QCD) interactions
conserve helicity and there is no way, by photon or gluon couplings, of flipping the helicity
of massles quarks.

A measurement of transversity requires a process in which h1 couples to another
chiral-odd function. Several suggestions have been discussed in the literature. At the
moment the most practicable way appears via SIDIS processes [7], in which h1 couples
to a chiral-odd fragmentation function, the Collins fragmentation function, as depicted
in fig. 3. In principle, the cleanest and most direct way should be via the measurement
of the double transverse spin asymmetry ATT in Drell-Yan processes, which couples two
transversity distributions (see fig. 4), as discussed in Section 5.

So far we have only considered collinear partonic configurations, in which the rele-
vant degrees of freedom, describing the nucleon structure, are the parton longitudinal
momentum fraction x and the helicities. Yet, it is already clear that the spin transverse
degree of freedom is at least as interesting, but much less known. It will be much more
so when also the intrinsic transverse motions of partons, k⊥, in addition to x, will be
considered. Which requires a detour into the issue of SSA.

3. – The (problem of) transverse Single Spin Asymmetries

Let us consider a 2 into 2 physical process, like AB → C D, in the center of mass
reference frame, A(p) + B(−p) → C(p′) + D(−p′), like in fig. 5. We wonder whether
or not the cross section for such a process can depend on the spin polarization S of one
particle only, say A; particle B is not polarized and the polarization of the final particles



The nucleon at twist-2,     
8 TMDs
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real real for quarks complex
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examples

Sivers function: needs interference between two 
amplitudes with nucleon helicity flip (chiral-even)

∆N f̂a/A↑ = 4 ImF++
+− = 4 Im

∑

XA,λXA

∫
F+,λXA

;+ F∗+,λXA
;−

∆N f̂a↑/A = −2 ImF+−
++ = −2 Im

∑

XA,λXA

∫
F+,λXA

;+ F∗−,λXA
;+

Boer-Mulders function: needs interference between two 
amplitudes with quark helicity flip (chiral-odd)



similar situation with fragmentation functions

c→ C + X

D̂λC ,λX ;λc helicity amplitude for the “process”:

from general properties of helicity amplitudes:

D̂λC ,λX ;λc
(z,k⊥C) = DλC ,λX ;λc

(z, k⊥C) eiλcφH
C

D̂
λC ,λ′

C
λc,λ′

c
(z,k⊥C) = D

λC ,λ′
C

λc,λ′
c

(z, k⊥C) ei(λc−λ′
c)φ

H
C

Collins function (unpolarized final particles)
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FIG. 2. One-loop corrections to the fragmentation of a
quark into a pion.

Σ(k) = A /k + B m , (9)

Γ(k, p) = C + D /p + E /k + F /p /k. (10)

The real parts of the functions A, B, C etc. are UV-
divergent and require in principle a proper renormaliza-
tion. Though our model is renormalizable, we do not
have to deal with this question at all, since only the
imaginary parts of the loop diagrams will turn out to
be important.

The contributions to the correlation function generated
by the diagrams (a) and (c) are given by:

∆(a)
(1)(k, p) = −

g2

(2π)4
(/k + m)

k2 − m2
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×
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2π δ((k − p)2 − m2). (12)

The contributions from diagrams (b) and (d) follow from

the hermiticity condition: ∆(b)
(1)(k, p) = γ0∆(a)†

(1) (k, p)γ0,

∆(d)
(1)(k, p) = γ0∆(c)†

(1) (k, p)γ0.
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FIG. 3. One-loop self-energy and vertex corrections.

Summing the contributions of the four diagrams and
inserting the resulting correlation function in Eq. (1), we
obtain the result
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Thus the actual value of the Collins function in this
model depends only on the imaginary parts of the co-
efficients defined in Eqs. (9–10). The lack of an imag-
inary component in these coefficients would inevitably
result in a vanishing Collins function. We can compute
the imaginary parts by applying the Cutkosky rule to
the self-energy and vertex diagram of Fig. 3. In this way,
as mentioned before, we can avoid the issues related to
renormalization, which affect only the real parts of the
diagrams. Explicit calculation leads to

Im (A + B) =
g2

16π2

(

1 −
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, (15)

where we have introduced the so-called Källen function,
λ(k2, m2, m2

π) = [k2 − (m + mπ)2][k2 − (m − mπ)2], and
the factors

I1 =
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× θ(k2 − (m + mπ)2). (17)

These integrals are finite and vanish below the thresh-
old of quark-pion production, where the self-energy and
vertex diagrams do not possess any imaginary part.
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These integrals are finite and vanish below the thresh-
old of quark-pion production, where the self-energy and
vertex diagrams do not possess any imaginary part.

3

2

q

p

q

p

p ! k ! l

k + q + l

k k + l

p ! k

k + q

l

p ! k

k + q

!

(a) (b)

FIG. 1: Tree-level and one-loop diagrams for the specator-model calculation of the Sivers function. The dashed line indicates
both the scalar and axial-vector diquarks.

where S is the spin of the target. The correlator Φ(x,!kT ) can be written as [17]

Φ(x,!kT ; S) =

∫

dξ− d2ξT

(2π)3
e+ik·ξ〈P, S|ψ̄(0)L[0−,∞−]L[0T ,∞T ]L[∞T ,ξT ]L[∞−,ξ−]ψ(ξ)|P, S〉

∣

∣

∣

∣

ξ+=0

, (2)

where the notation L[a,b] indicates a straight gauge link running from a to b. In Drell-Yan processes the link runs
in the opposite direction, to −∞ [17]. For the calculation of the unpolarized function f1 the transverse part of the
gauge link does not play a role and the entire gauge link can be reduced to unity. Therefore, for this first part of the
calculation it is sufficient to consider only the handbag diagram.

At tree level, we follow almost exactly the spectator model of Jakob, Mulders and Rodrigues [21]. In this model,
the proton (with mass M) can couple to a constituent quark of mass m and a diquark. The diquark can be both a
scalar particle, with mass Ms, or an axial-vector particle, with mass Mv. The relevant diagram at tree level (identical
for the scalar and axial-vector case) is depicted in Fig. 1 (a). In our model, the nucleon-quark-diquark vertices are

Υs = gs(k
2), Υµ

v =
gv(k2)√

2
γ5γ

µ. (3)

We make use of the dipole form factor

gs/v(k
2) = Ns/v

(k2 − m2) (1 − x)2
(

!k2
T + L2

s/v

)2 , (4)

where

!k2
T = −(1 − x) k2 − xM2

s/v + x (1 − x)M2, (5)

L2
s/v = (1 − x)Λ2 + xM2

s/v − x (1 − x)M2. (6)

The only difference with respect to Ref. [21] is the form of Υv – the vertex involving nucleon, quark, and axial-vector
diquark. This change modifies the original results only slightly. Note that our choice of the form factor, defined
in Eq. (4), is very different from the Gaussian form factor employed in Ref. [19]. Both choices have the effect of
eliminating the logarithmic divergences arising from kT integration and suppress the influence of the high kT region,
where anyway perturbative corrections should be taken into account [20].

The final results for the unpolarized distribution function f1 are

fs
1 (x,!k2

T ) =
g2

s

[

(xM + m)2 + !k2
T

]

2 (2π)3 (1 − x) (k2 − m2)2
=

N2
s (1 − x)3

[

(xM + m)2 + !k2
T

]

16π3
(

!k2
T + L2

s

)4 , (7)

fv
1 (x,!k2

T ) =
g2

v

[

(xM + m)2 + !k2
T + 2xmM

]

2 (2π)3 (1 − x) (k2 − m2)2
=

N2
v (1 − x)3

[

(xM + m)2 + !k2
T + 2xmM

]

16π3
(

!k2
T + L2

v

)4 . (8)

Bacchetta, Gamberg, Goldstein, Mukherjee, Metz, Amrath, Schaefer, 
Yang, Brodsky, Schmidt, Hwang, Scopetta, Courtoy, Frattini, Vento, 

Pasquini, Xiao, Yuan ....

models for Collins function

and for Sivers function



(a) (b)

y1, !1⊥

y2, !2⊥ x2, k2⊥

x1, k1⊥

yn, !n⊥ xn, kn⊥

FIG. 1: Light-front time-order perturbation Feynman diagrams for the phase contribution from

one-gluon exchange between two constituent quarks.

where
∑

k− represents the sum of all partons energy k−
i , d[i]

′ represents the integral of

(yi, !i⊥). The interaction kernel K can be calculated from the light-front time-order pertur-

bation theory [2]. The wave functions ψn and ψ′
n may differ. From the above expression,

we find that the phase of ψn may come from the wave function in the right hand side ψ′
n

or the interaction kernel K. In the following, we assume that the wave function ψ′
n is real,

for example, from model calculation such as constituent quark model [18]. We will focus on

the contribution from the interaction kernel. We will calculate, in particular, the one-gluon

exchange contribution to the interaction kernel.

At the lowest order of the light-front time-order perturbation theory, we have one gluon

exchange contribution to the interaction kernel. This can be expressed as a sum of all

diagrams with gluon connection between all possible pair of constituents in the light-front

wave function. For example, the contribution from the gluon exchange between the ith and

jth quark can be written as,

K[k; !]ij =
ūλi

(xi, ki⊥)√
xi

γµ
uλ′

i
(yi; !i⊥)
√
yi

dµν
ūλj

(xj, kj⊥)
√
xj

γν
uλ′

j
(yj; !j⊥)
√
yi

×











1

P− − q− − k−
i − !−j −

∑

α$={i,j}
k−
α + iε

θ(q+)

q+

+
1

P− − q′− − k−
j − !−i −

∑

α$={i,j}
k−
α + iε

θ(q′+)

q′+











, (3)

where λ represents the helicity for the associated quarks, q+ = k+
j − !+j and q′+ = k+

i − !+i ,

and the color factors are implicit in the above equation. Similar expression shall hold for the
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Brodsky, Pasquini, Xiao, Yuan, arXiv:1001.1163 
Pasquini, Yuan, arXiv:1001.5398 

Sivers function from light-front wave function

[fq⊥
1T ]SIDIS = −[fq⊥

1T ]DY

in all models one has: 

see also Hwang, arXiv:1003.0867 - incorporation of final state 
interactions into the light-cone wave function



u(pi, λi) =
√

p0
i

(
1
λi

)
χλi

(p̂i) p̂i = (sin θi cos φi, sin θi sin φi, cos θi)

χ+(p̂i) =




cos(θi/2) e−iφi/2

sin(θi/2) eiφi/2



 χ−(p̂i) =




− sin(θi/2) e−iφi/2

cos(θi/2) eiφi/2





phases in (non-planar) helicity amplitudes

if scattering is not planar all phases are different and remain in the 
amplitudes; they suppress the results when integrating over k┴ 

Dirac-Pauli helicity spinors, pi = (p0
i , pi)

M̂ ∝ ū(p3, λ3) γµ u(p1, λ1) ū(p4, λ4) γµ u(p2, λ2)

= M̂0 eiϕ



TMD factorization 

factorization assumed 

TMD - PDF 

TMD - PDF 

TMD-FF non planar 
pQCD 

dynamics

non planar 
pQCD 

dynamics



λq λ′
q

p, Sp, S

Q2Q2

h h

particular case: SIDIS

dσ!p→!hX =
∑

q

fq(x,k⊥;Q2)⊗ dσ̂!q→!q(y, k⊥;Q2)⊗Dh
q (z,p⊥;Q2)

factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

PT ! Q2Two scales:



keeping into account all phases one obtains 

which exactly corresponds to the usual expression 

dσ!p↑→!′hX − dσ!p↓→!′hX

dxB dQ2 dzh d2P T dφS
=

∑

q

∫
d2k⊥

4e2
qe

4

y2
[−4ImF++

+− (x, k⊥)] sin(φS − φ⊥)
(

1 + (1− y)2

2
− 2(1− y)

√
1− y

k⊥
Q

cos φ⊥

)
Dh

q (z, PT )

−
∑

q

∫
d2k⊥

4e2
qe

4

y2

{
F+−

+− (x, k⊥)
[
(1− y)

(
sin(φS + φh)− zh

k⊥
PT

sin(φS + φ⊥)
)

−2(2− y)
√

1− y
k⊥
Q

(
sin(φS + φh − φ⊥)− zh

k⊥
PT

sin(φS)
)]

−F−+
+− (x, k⊥)

[
(1− y)

(
sin(φS − φh − 2φ⊥)− zh

k⊥
PT

sin(φS − 3φ⊥)
)

−2(2− y)
√

1− y
k⊥
Q

(
sin(φS − φh − φ⊥)− zh

k⊥
PT

sin(φS − 2φ⊥)
)]}

PT

p⊥
∆NDh

q (z, PT ) ,

TMD-PDF hard scattering TMD-FF

dσ!(S!)+p(S)→!′+h+X

dxB dQ2 dzh d2P T dφS

= ρ!,S!

λ!,λ′
!
⊗ ρq/p,S

λq,λ′
q
f̂q/p,S(x,k⊥) ⊗ M̂λ!,λq ;λ!,λq

M̂∗
λ′

!,λ′
q ;λ′

!,λ′
q
⊗ D̂h

λq,λ′
q
(z,p⊥)



dσ

dφ
= FUU + cos(2φ) F cos(2φ)

UU
+

1
Q

cos φ F cos φ
UU

+ λ
1
Q

sinφ F sin φ
LU

+ SL

{
sin(2φ) F sin(2φ)

UL
+

1
Q

sinφ F sin φ
UL

+ λ

[
FLL +

1
Q

cos φ F cos φ
LL

]}

+ ST

{
sin(φ− φS)F sin(φ−φS)

UT
+ sin(φ + φS) F sin(φ+φS)

UT
+ sin(3φ− φS) F sin(3φ−φS)

UT

+
1
Q

[
sin(2φ− φS) F sin(2φ−φS)

UT
+ sinφS F sin φS

UT

]

+ λ

[
cos(φ− φS) F cos(φ−φS)

LT
+

1
Q

(
cos φS F cos φS

LT
+ cos(2φ− φS)F cos(2φ−φS)

LT

)]}
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φ
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"
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2. Higher-twist partonic correlations    
(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan; 

Bacchetta, Bomhof, Mulders, Pijlman; Koike ... ) 

d∆σ ∝
∑

a,b,c

Ta(k1, k2,S⊥)⊗ fb/B(xb)⊗Hab→c(k1, k2)⊗Dh/c(z)

twist-3 functions hard interactions

(A↑B → h X)contribution to SSA  

(Ta ∝ f⊥(1)
1T )

factorization established 



processes with two scales: SIDIS and Drell-Yan
TMD vs. higher-twist collinear factorization 

ΛQCD ! k⊥ " QTMD factorization holds at 

higher-twist factorization at ΛQCD ! k⊥ ! Q

well established relationships between TMDs 
and quark-gluon correlators 

the two approaches are consistent in the 
overlapping intermediate k⊥ region 

TMD factorization not proven for 
processes with one (large) scale only

Yuan, Zhou, Liang; Ji, Qiu, Vogelsang, ...



Sivers effect in p p collisions

Asymmetric jet or hadron correlations in p↑ p→ h1 h2 X

D.B. & Vogelsang, PRD 69 (2004) 094025

Bacchetta et al., PRD 72 (2005) 034030

P⊥ sin δφ weighted cross section: ∝ f⊥(1)
1T (x)

RHIC data consistent with zero at the few percent level

Theoretically this Sivers asymmetry is not as straightforward as in SIDIS

Potential problems with factorization

Collins & Qiu, PRD 75 (2007) 114014; Collins, arXiv:0708.4410
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Bacchetta, Bomhof, Mulders, Pijlman; Boer,Vogelsang, Yuan; Ratcliffe, Teryaev 
SSA in pp → jet + jet + X,  H1 H2 → h1 h2 X 

d∆σ ∝
∑

a,b,c

f⊥(1)
1T (x1)⊗ fb/H2(x2)⊗ dσ̂[a]b→cd ⊗Dh1/c(z1) Dh2/d(z2)

gluonic pole cross sections take into account gauge links 

dσ̂[a]b→cd =
∑

D

C [D]
G dσ̂D

ab→cd C [D]
G

Diagram dependent 
Gauge link Colour 

factors 

Sivers contribution to SSA 

(breaking of factorization?)

(Ta ∝ f⊥(1)
1T )

2

FIG. 1: The leading order contribution to the cross section of H1+H2 → h1+h2+X.

hadron-jet and jet-jet production in hadron-hadron scattering. The 1-particle inclusive process p↑+p → π+X involving
a transversely polarized proton is known to show a large single-spin asymmetry [13, 14, 15, 16, 17]. Some of the
mechanisms [18, 19, 20, 21, 22] to explain these asymmetries involve T -odd functions, such as the Sivers distribution
function or the Collins fragmentation function [23]. These functions are expected to appear in a cleaner way in
2-particle inclusive processes [10]. Here we only consider single-hadron fragmentation functions, in which case the
2-particle inclusive production requires h1 and h2 to belong to different, in the perpendicular plane approximately
opposite, jets.

In this paper we limit ourselves to the (anti)quark contributions with as main goal to show the relevant gauge-link

structure for the T -odd Sivers distribution functions f (1)
1T and the Collins fragmentation functions H⊥(1)

1 entering these
processes. This is important for the study of universality of these functions. The paper is structured as follows. In
section II we consider the kinematics particular to 2→2 particle scattering. In section III we discuss our approach and
several (weighted) scattering cross section are written down for hadronic pion production and hadronic jet production
in section IV. Details about the gauge-links and their consequences for distribution and fragmentation functions are
dealt with in the appendices.

II. KINEMATICS

The hard scale in the process H1(P1)+H2(P2) → h1(K1)+h2(K2)+X is set by the center-of-mass energy
√

s = Ecm.
The leading order contribution to the scattering cross section is shown in Fig. 1. In a hard scattering process it is
important to get as much information about the partonic momenta as possible, in our case including, in particular,
their transverse momenta. The partonic momenta, for which p1·P1 ∼ p2

1 ∼ P 2
1 = M2

1 are of hadronic scale, are
expanded as follows

p1 = x1 P1 + σ1 n1 + p1T , (1a)

p2 = x2 P2 + σ2 n2 + p2T , (1b)

k1 = z−1
1 K1 + σ′

1 n′
1 + k1T , (1c)

k2 = z−1
2 K2 + σ′

2 n′
2 + k2T , (1d)

where the ni (n′
i) are lightlike vectors chosen such that P1 ·n1 ∝ O(s1/2) and similarly for the other partonic momenta.

The fractions xi = pi·ni/Pi·ni and z−1
i = ki·n′

i/Ki·n′
i are lightcone momentum fractions. The quantities multiplying

the vectors ni are of order s−1/2 and are the lightcone components conjugate to pi·ni. They are given by

σi =
pi·Pi − xi M2

i

Pi·ni
, (2)

with similar expressions for the σ′
i. If any of the ‘parton’ momenta is actually an external momentum (for leptons or

when describing jets) the momentum fractions become unity and the transverse momenta and σi vanish.
Integration over parton momenta is written as

d4p1 = dx1 d2p1T d(p1·P1) , (3)

with d(p1·P1) = (P1·n1) dσ1 and similar expressions for d4p2, d4k1 and d4k2. The integrations over the parton mo-
mentum components (pi·Pi) and (ki·Ki) will be included in the definitions of the TMD distribution and fragmentation
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FIG. 3. Soft parts representing the quark-quark and quark-quark-gluon matrix elements used in Eqs. 9 - 12

where

Φij(p; P, S) =

∫
d4ξ

(2π)4
ei p·ξ〈P, S|ψj(0)ψi(ξ)|P, S〉, (9)

∆ij(k; Ph, Sh) =
∑

X

∫
d4ξ

(2π)4
ei k·ξ < 0|ψi(ξ)|Ph, X >< Ph, X |ψj(0)|0 >, (10)

Φα
A ij(p, p − p1; P, S) =

∫
d4ξ

(2π)4
d4η

(2π)4
ei p·ξ ei p1·(η−ξ) 〈P, S|ψj(0)gAα(η)ψi(ξ)|P, S〉, (11)

∆α
A ij(k, k − k1; Ph, Sh) =

∑

X

∫
d4ξ

(2π)4
d4η

(2π)4
ei k·ξ ei k1·(η−ξ) 〈0|ψi(ξ) gAα(η)|Ph, X >< Ph, X |ψj(0)|0〉. (12)

illustrated in Fig. 3. In the above expression we have omitted the contributions with the opposite direction on
the fermion line. It adds to the result in Eq. 8 terms with q ↔ −q and µ ↔ ν. In cross sections it will always
lead to extending a sum over contributions from quarks to the sum over quarks and antiquarks.

The aim of the calculation is an expansion in powers of 1/Q. For this a number of considerations are
important. First, the matrix elements represented by blobs in the diagrammatic expansion should vanish fast
enough when any of the products of momenta involved becomes large, e.g. the virtualities of the quarks or
gluons. To be precise, in Fig. 3 the products p2 ∼ p2

1 ∼ p · p1 ∼ p · P ∼ p1 · P ∼ P 2 = M2 & Q2. With
the choice of parametrization in Eqs. 5-7, this implies that for the momenta in Figs 3a and 3c one has for the
plus-components p+, p+

1 , P+ ∼ Q, while the minus-components p−, p−1 , P− ∼ 1/Q. For the fragmentation parts
(Figs 3b and 3d) one has minus-components k−, k−

1 , P−
h ∼ Q, while for the plus-components k+, k+

1 , P+
h ∼ 1/Q.

The transverse momenta are of O(M). Introducing momentum fractions x = p+/P+ and z = P−
h /k−, writing

pµ = p− nµ
− + xP+ nµ

+ + pµ
T
, (13)

kµ =
P−

h

z
nµ
− + k+ nµ

+ + kµ
T
, (14)

one finds, when neglecting O(1/Q2) contributions, that δ4(p + q − k) −→ δ(x − xB) δ(z − zh) δ2(pT + qT − kT ),
thus identifying the scaling variables and momentum fractions, x = xB and z = zh.

Thus, in a calculation up to O(1/Q2), the integration over the minus-components of momenta in the matrix
elements Φ and ΦA can be performed, restricting them to the lightfront,

Φij(x, pT ) =

∫

dp− Φij(p; P, S) =

∫
dξ− d2ξT

(2π)3
ei p·ξ < P, S|ψj(0)ψi(ξ)|P, S >

∣
∣
∣
∣
ξ+=0

, (15)

while Φα
A(p+, pT , p+

1 , p1T ) =
∫

dp− dp−1 Φα
A(p, p− p1; P, S) involves two integrations over the minus-components

of the parton momenta. We will occasionally also use the variable x1 defined via p+
1 = x1 P+. The integrations

5

gluonic pole



but, recent paper casts doubts on 
factorization for di-jet production ... 
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FIG. 11: A graph of the type which can lead to violations of generalized TMD-factorization in unpolarized scattering in real
QCD.

Furthermore, the contribution from collinear gluon at-
tachments (which lead to factorization breaking) should
not be thought of as negligible higher order corrections.
They correspond to collinear divergences in higher or-
der hard scattering calculations. In real QCD, they are
non-perturbative gluons in the strong coupling regime.
For the perturbation series to have sensible convergence
properties, it must be possible to rearrange terms such
that the collinear gluons are resummed to all orders into
TMD PDFs. We also remark that, at the level of many
extra collinear gluons, there are more graphs with glu-
ons collinear to both hadrons simultaneously (which led
to a breakdown of generalized TMD-factorization) than
graphs with gluons collinear to one hadron only.
While the observation of generalized TMD factoriza-

tion breaking leads to frustrating practical difficulties
in cross section calculations, it should not necessarily
be regarded as a purely negative result. The question
of whether transverse momentum effects can be mean-
ingfully associated with parton transverse momentum in
separate parton correlation functions for each hadron is
intrinsically important in the search for an improved fun-
damental understanding of QCD dynamics in hard col-
lisions. A counter-proof implies the existence of effects
which challenge normal partonic intuition, and suggests
new avenues of research. While naive factorization fails,
the fact that the extra gluons eikonalize suggests that
Wilson lines still may play a role. Insight might be
gained, for example, from methods currently being ap-
plied to small-x physics (e.g. [28, 29]).
It is possible to understand the origin of the general-

ized TMD-factorization breakdown intuitively as arising
from non-linear effects in the phases acquired by partons
as they pass through the A+ and A− fields of the collid-
ing hadrons. If the overall phase were simply the product

of the phases induced by the A+ fields from hadron H1

and the A− fields from hadron H2, then one could asso-
ciate any process-dependent phases induced by the A+

field in hadron H1 with a modified Wilson line for the
TMD PDF of H1 and, likewise, any process-dependent
phases induced by the A− field from H2 could be asso-
ciated with a modified Wilson line for the TMD PDF of
H2. However, in the non-Abelian theory the role of the
A− gluons in H2 is affected by the presence of the A+

gluons from H1 and visa-versa. A direct example of this
is Fig. 8/Eq. (38), where a single A− gluon exchanged
between H2 and the opposite-side struck quark gives a
non-zero contribution, but only because there is simul-
taneously an A+ gluon exchanged between H1 and the
other struck quark. This means that one cannot address
the role of phases induced by the A+ and A− fields in-
dependently, but rather must deal with them simultane-
ously. The result is a type of nonperturbative correlation
which cannot be identified as arising strictly from gluons
coming from either hadron independently, but only from
the combination.
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Phenomenology - TMD factorization

dσ↑ − dσ↓ ≡ Eπ dσ p→π X

d3pπ

− Eπ dσ p→π X

d3pπ

= [dσ↑ − dσ↓]Sivers + [dσ↑ − dσ↓]Collins

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓
main contribution from Sivers 

and Collins effects

[dσ↑ − dσ↓]Sivers =
∑

qa,b,qc,d

∫
dxa dxb dz

16 π2 xa xb z2s
d2k⊥a d2k⊥b d3p⊥ δ(p⊥ · p̂c) J(p⊥) δ(ŝ + t̂ + û)

× ∆Nfa/(xa, k⊥a) cos φa

× fb/p(xb, k⊥b)
1
2

[
|M̂0

1 |2 + |M̂0
2 |2 + |M̂0

3 |2
]

ab→cd
Dπ/c(z, p⊥)

Sivers phase

negligible contributions from other TMDs

[dσ↑ − dσ↓]Collins =
∑

qa,b,qc,d

∫
dxa dxb dz

16 π2 xa xb z2s
d2k⊥a d2k⊥b d3p⊥ δ(p⊥ · p̂c) J(p⊥) δ(ŝ + t̂ + û)

× ∆T qa(xa, k⊥a) cos(φa + ϕ1 − ϕ2 + φH
π )

× fb/p(xb, k⊥b)
[
M̂0

1 M̂0
2

]

qab→qcd
∆NDπ/qc

(z, p⊥)

   Collins + scattering 
phases
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FIG. 1: Maximized values of Collins AN vs xF compared to E704 data [26]. The left/right figures correspond to
the incorrect/correct sign for the qg → qg channel. Thin lines correspond to putting all phases equal to zero.

allows to relate xa, xb and z, namely, in this collinear picture, xa xb z s = −xa t − xb u, where ŝ, t̂, û
(s, t, u) are the Mandelstam variables for the partonic (hadronic) process.

However, in such a collinear treatment it is impossible to produce transverse single-spin asymmetries.
The Collins mechanism for these asymmetries, expressed through the Collins fragmentation function, re-
lies crucially on the produced hadron being emitted from the fragmenting parton with non-zero intrinsic
transverse momentum. Thus, in the early efforts to study the role of the Collins mechanism in trans-
verse single-spin asymmetries [35] we adopted the simplifying strategy of treating the parton densities
collinearly, and only introduced transverse momentum where it was essential i.e. in the fragmentation
into the detected final hadron. It appeared that the Collins effect could indeed explain the measured
asymmetries, but later it was shown [64] that the transversity function for the d quark, which multiplies
the Collins fragmentation function, needed in [35], violates the Soffer bound

|∆T d(x)| ≤
1

2
[d(x) + ∆d(x)] (13)

which is particularly restrictive as a consequence of ∆d(x) being negative. It was claimed in [64] that
respecting the Soffer bound produced results “ in hopeless disagreement with the data”, even when all
densities and fragmentation functions were allowed to take on the maximum values permitted by the
positivity and Soffer bounds.

In further studies of both the Collins and Sivers mechanisms [1] we tackled the formidable task of
allowing all parton densities and fragmentation functions to depend on intrinsic transverse momentum.
This greatly increases the number of numerical integrations involved and vastly complicates the analysis,
since the partonic scattering, as viewed from the Lab frame or the reaction CM frame, is then non-planar,
and this gives rise to the phase factors in Eqs. (8, 9). It was found that the phase factors produce a
strong suppression of the transverse single spin asymmetry arising from the Collins mechanism, which
reinforced the result of [64] that the Collins mechanism was unable to explain the large asymmetries
found in p↑p → πX at moderate to large Feynman xF . The Sivers effect, on the other hand, was not
suppressed.

However, it turns out that all the above treatments, perhaps fortuitously, contain a wrong sign in the
numerical code for the contribution of one of the partonic interactions, the qg → qg channel, leading to
an incorrect cancellation and consequently to an underestimate of the size of the Collins effect. Thus
the earlier claim that the Collins mechanism, by itself, is unable to explain the measured single spin
asymmetries is unjustified and the whole matter requires further analysis, as will be done in the following
sections.

The effect of this error and of the inclusion of the phases can be clearly seen in Fig. 1. On the left
we show the maximum possible single spin asymmetry attainable from the Collins mechanism, with and
without the inclusion of phases, and utilizing the incorrect sign in the numerical code. On the right the
corrected numerical code is used. While, on the right, the phases still reduce the magnitude of the effect,
it is less marked than on the left, and in all cases the magnitude of the maximum asymmetry is larger
with the corrected code.
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FIG. 1: Maximized values of Collins AN vs xF compared to E704 data [26]. The left/right figures correspond to
the incorrect/correct sign for the qg → qg channel. Thin lines correspond to putting all phases equal to zero.

allows to relate xa, xb and z, namely, in this collinear picture, xa xb z s = −xa t − xb u, where ŝ, t̂, û
(s, t, u) are the Mandelstam variables for the partonic (hadronic) process.

However, in such a collinear treatment it is impossible to produce transverse single-spin asymmetries.
The Collins mechanism for these asymmetries, expressed through the Collins fragmentation function, re-
lies crucially on the produced hadron being emitted from the fragmenting parton with non-zero intrinsic
transverse momentum. Thus, in the early efforts to study the role of the Collins mechanism in trans-
verse single-spin asymmetries [35] we adopted the simplifying strategy of treating the parton densities
collinearly, and only introduced transverse momentum where it was essential i.e. in the fragmentation
into the detected final hadron. It appeared that the Collins effect could indeed explain the measured
asymmetries, but later it was shown [64] that the transversity function for the d quark, which multiplies
the Collins fragmentation function, needed in [35], violates the Soffer bound

|∆T d(x)| ≤
1

2
[d(x) + ∆d(x)] (13)

which is particularly restrictive as a consequence of ∆d(x) being negative. It was claimed in [64] that
respecting the Soffer bound produced results “ in hopeless disagreement with the data”, even when all
densities and fragmentation functions were allowed to take on the maximum values permitted by the
positivity and Soffer bounds.

In further studies of both the Collins and Sivers mechanisms [1] we tackled the formidable task of
allowing all parton densities and fragmentation functions to depend on intrinsic transverse momentum.
This greatly increases the number of numerical integrations involved and vastly complicates the analysis,
since the partonic scattering, as viewed from the Lab frame or the reaction CM frame, is then non-planar,
and this gives rise to the phase factors in Eqs. (8, 9). It was found that the phase factors produce a
strong suppression of the transverse single spin asymmetry arising from the Collins mechanism, which
reinforced the result of [64] that the Collins mechanism was unable to explain the large asymmetries
found in p↑p → πX at moderate to large Feynman xF . The Sivers effect, on the other hand, was not
suppressed.

However, it turns out that all the above treatments, perhaps fortuitously, contain a wrong sign in the
numerical code for the contribution of one of the partonic interactions, the qg → qg channel, leading to
an incorrect cancellation and consequently to an underestimate of the size of the Collins effect. Thus
the earlier claim that the Collins mechanism, by itself, is unable to explain the measured single spin
asymmetries is unjustified and the whole matter requires further analysis, as will be done in the following
sections.

The effect of this error and of the inclusion of the phases can be clearly seen in Fig. 1. On the left
we show the maximum possible single spin asymmetry attainable from the Collins mechanism, with and
without the inclusion of phases, and utilizing the incorrect sign in the numerical code. On the right the
corrected numerical code is used. While, on the right, the phases still reduce the magnitude of the effect,
it is less marked than on the left, and in all cases the magnitude of the maximum asymmetry is larger
with the corrected code.

maximum possible contribution of Collins effect 
(thin lines = all phases to zero)

there was a mistake in 
previous evaluation (wrong 
sign in one spin transfer 

cross-section)

in principle, Collins effect 
might be large (depending 

on Collins function and 
transversity)
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contributions to A_N of SIDIS extracted Sivers, Collins 
and transversity distributions 
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a combination of Sivers and Collins effect might explain data 
(great uncertainty in actual knowledge of Sivers functions at large x)



q = u, ū, d, d̄, s, s̄

dσ↑ − dσ↓ ∝
∑

q

∆Nfq/p↑(x1,k⊥)⊗ fq̄/p(x2)⊗ dσ̂

Sivers effect in D-Y processes 

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

A
sin(φS−φγ)
N ≡

2
∫ 2π
0 dφγ [dσ↑ − dσ↓] sin(φS − φγ)

∫ 2π
0 dφγ [dσ↑ + dσ↓]

p p

qT

qL

(p-p c.m. frame) 
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FIG. 2: The single spin asymmetries A
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N for the Drell-Yan process π±p↑ → µ+µ− X at COMPASS, as a function of

xF = x1−x2 (left panel) and as a function of M (central panel). The integration ranges are (0 ≤ qT ≤ 1) GeV, (4 ≤ M ≤ 9) GeV
and 0.2 ≤ xF ≤ 0.5. The results are given for a pion beam energy of 160 GeV, corresponding to

√
s = 17.4 GeV. The right

panel shows the allowed region of x2 values as a function of xF .
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s = 17.4 GeV. The right panel shows the allowed region of x2 values as a

function of xF .
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Predictions for AN 
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, e-Print: arXiv:0901.3078 



Conclusions

SSAs in inclusive hadronic interactions keep 
being large and measured   

TMDs, Sivers and Collins mechanisms, might 
explain data on AN. Difficult phenomenology 

TMD vs. higher-twist collinear factorization: 
much improvement for two-scale processes...

Factorization in one-scale processes. 
Universality of Collins function.                      

(Non) universality of Sivers function.                
QCD evolution ...


